Methane in the Changjiang (Yangtze River) Estuary and its Adjacent Marine Area: Riverine Input, Sediment Release and Atmospheric Fluxes

Guiling Zhang¹, Jing Zhang², Sumei Liu¹, Jingling Ren¹

 Department of Marine Chemistry, Ocean University of China
State Key Laboratory of Estuarine and Coastal Research, East China Normal University

Introduction

- CH₄ is an important atmospheric trace gas, which plays significant roles in the global warming and atmospheric chemistry (IPCC, 2001).
- CH₄ is a gaseous constituent of C cycle in marine environment
- Global oceans are net natural source of atmospheric CH₄
 - Oceanic emissions of CH₄ is 11-18 Tg Yr⁻¹, which is about 2-4% of atmospheric CH₄ (Bange *et al.*, 1994)
- > Estuaries have been estimated to contribute to 7.4% of the total oceanic CH_4 emissions (Bange *et al.*, 1994).
- The oceanic source for CH₄ may be further enhanced by the increase in emission rates induced by eutrophication and other human-induced changes in highly perturbed coastal regions

Study Area

(a) April (×) and November (o) of 2002

(b) August of 2005 (circled area indicating the turbidity maximum)

(c) June, Aug., Oct. of2006 (•) and Xuliujing(XLJ, solid triangle)

CH₄ in the Changjiang estuary and its adjacent marine water

Table 1. Observed CH_4 concentrations in the surface and bottom waters of the Changjiang Estuary and its adjacent area (Numbers in the parentheses are the saturations of methane in %)

		Surface CH_4 (nM)		Bottom Cl	Bottom CH_4 (nM)	
Date	n	Range	Average	Range	Average	
Apr. 25-May 3, 2002	28	3.54-19.1	7.95 ± 5.24	3.93-29.7	9.74 ± 6.26	
		(154-782)	(326 ± 205)			
Nov. 4-11, 2002	30	2.71-16.1	5.84 ± 3.64	2.86-11.8	5.97 ± 2.55	
		(123-595)	(244 ± 132)			
Aug.21-30, 2005	40	3.46-88.7	18.0 ± 15.8	5.39-89.2	20.6 ± 15.6	
		(177-3841)	(810±667)			
June 2-11, 2006	21	3.66-35.07	9.46±8.33	4.21-42.30	14.72 ± 9.67	
		(149-1533)	(423 ± 368)			
Oct.3-13, 2006	27	3.71-54.50	9.28 ± 10.01	4.33-50.50	11.35 ± 8.89	
		(189-2601)	(454 ± 478)			

CH_4 in various estuaries in the literatures						
Study Area	Date	Sur. CH ₄ (nM)	Sur. R (%)	S	Flux (µmol·m ⁻² ·d ⁻¹)	References
Tomales Bay	1990-19 91	8-100			6.75-10.1	Sansone et al., 1998
Columbia R. estuary	Aug. 1995	12-120		7-23		Sansone et al., 1999
Parker River estuary	1996/1997	28-930		0-28		
Oregon estuaries Alsea estuary	1979-1982	5.7-695	300-29000	2.0-33.7	2.5-1312.5 (181.3) ^c	De Angelis and Lilley, 1987
Yaquina estuary	1979-1982	8.1-323	125-42000	14.3-33.7		
Salmon estuary	1979-1982	123-323	52000-124000	20.1-32.1		
Hudson River estuaty					350	De Angelis and Scranton, 1993
Tyne Estuary	Jan. 1996	13.5-654 (164)	450-20,000 (5843)			Upstill-Goddard <i>et al.</i> , 2000
Elbe R. estuary	May 1994	20-63		6-26		Rehder et al., 1998
Rhone R. plume	June 1998	397 1363				Marty et al., 2001
European estuaries					(130) ^c	Middleburg et al., 2002
Elbe	Apr. 1997	4.2-111	130-2980 (580)	0.4-29.3		
Rhine	Oct.96-Nov.98	4.1-1026	140-49700 (8400)	0-33.8		
Scheldt	Jun. 96-Oct. 98	20-485	380-20400 (3210)	0.4-33.3		
Gironde	Oct. 96-Feb. 98	3.7-\$59	70-13400 (580)	0-35.1		
Danube Estuaries	July-Aug, 95	(131±42)	(5340)		(260) ^a ; (470) ^b	Amouroux et al., 2002
Pulicat Lake	Dec. 2000	94-501 (242)			(54) ^a ; (280) ^b	Shalini et al., 2006
Changjiang estuary	2002-2006	2.7-88.7 (10.1)	123-3841 (451)			This study

a. K_w was estimated by the LM86 equation; b. K_w was estimated by the W92 equation; c. Averaged value for all of the studied estuaries; Numbers in the parentheses are the average value

Horizontal distributions of CH₄ in the Changjiang Estuary

Bottom

CH₄ and Turbidity

CH₄ vs. salinity in surface waters of the Changjiang Estuary

CH₄ in the Changjiang (April/May 2003)

■ CH₄: 4.50-299 nM 106±76.7 nM

- r				
Rivers	Description	CH ₄ (nM)	CH ₄ (%)	References
Oregon rivers McKenzie Willamette Alsea Yaguina Siletz	1979-1982	5-79 155-298 22-729 276-1,730 500-1,100	200-2600 5200-11100 700-30,300 9,500-59,800 17,500-38,500	De Angelis and Lilley, 1987
Mississippi		107-366	3,600-15,200	Swinnerton & Lamontagne, 1974
Hudson	In summer In spring	98-940 101-303	4,400-42,400 2,700-8,100	De Angelis and Scranton, 1993
Walker creek		140-950	6,000-40,000	Sansone et al., 1998
Amazon	Open water	460-3,700	16,100-129,500	Devol et al., 1990
	Main stem	(180±30)	(6,300±1,050)	Bartlett et al., 1990
Orinoco	Main stem, SepMarch	(170)		Smith et al., 2000
Ouse	Dec. 1996	(119±47)	$(3,861\pm 667)$	Upstill-Goddard, 2000
Tyne	Dec. 1996	2.6-146	75-4,129	Upstill-Goddard, 2000
Scheldt	Jun. 1996-Oct.1998	179-485 (282±138)		Middelburg et al., 2002
Elbe		60-120	1,750-3,500	Wernecke et al., 1994
	April 1997	111		Middelburg et al., 2002
Douro	Sep. 1998	63-128		Middelburg et al., 2002
Rhine	Oct. 1996-Apri. 1998	37-1437		
Gironde	Oct. 1996-Feb. 1998	10–559		
Thames	April 1997	273		
Yangtze River	Oct. 2004-Sep. 2005 Apr/May 2003, main stem	$16.2-126.2 (71.6 \pm 36.3) \\ 106 \pm 76.7$		This study

Compilation of dissolved methane in various rivers (Numbers in the parentheses are the average value)

Riverine input of CH₄ via Changjiang (Oct. 04-Sep. 05)

• CH₄ in Xuliujing (XLJ) ranged between 16.2 to 126.2 nM with an average of 71.6 \pm 36.3 nM • CH₄ input via Changjiang is estimated to be 70.6 \times 10⁶ mol/yr

Sediment release of CH₄ from Changjiang Estuary

Station	Date	Description	CH ₄ emission rate µ mol.m ⁻² .d ⁻¹
DB6	Apr. 2002	Silt, depth 23m	2.42
DC10	Apr. 2002	Clay, depth 10m	1.91

•Sediment release of CH₄ from the Changjiang Estuary was estimated to be 25×10^6 mol yr⁻¹, which is equal to about 40% of the riverine input of CH₄

 CH₄ production in the sediments may be much higher in summer than in spring

•More measurements on the CH_4 emission rates at different seasons in the Changjiang Estuary will be conducted to assess the source strength of sediment release accurately

Air-sea fluxes of CH₄ from the Changjiang Estuary

• Sea to air CH₄ fluxes from the Changjiang Estuary is obviously higher than those from the adjacent marine area.

•Annual CH₄ emission from the studied region was 10.0×10^8 and 19.6×10^8 mol yr⁻¹ by LM86 and W92 equation.

Conclusions

- Riverine input and sediment release are important sources of CH₄ in the Changjiang estuary and its adjacent area
- The Changjiang estuary and its adjacent area acts as a significant source of atmospheric CH₄

Thank you!

Computation of sea-to-air fluxes

Saturation: R (%) = C_{obs}/C_{eq} Sea-to-air flux: F=k × ($C_{obs}-C_{eq}$)

Where C_{obs} is the observed concentration of dissolved gases; C_{eq} is the air-equilibrated seawater gases concentration; k is gas transfer velocity

References	relationships to estimating k	U ₁₀ (m/s)
Liss and Merlivat (1986, LM86)	k=0.17U ₁₀ (Sc/600) - ^{2/3} k=(2.85 × U ₁₀ -9.65)(Sc/600)- ^{1/2} k=(5.9 × U ₁₀ -49.3) (Sc/600)- ^{1/2}	$0 < U_{10} \le 3.6$ $3.6 < U_{10} \le 13$ $13 < U_{10}$
Wanninkhof (1992, W92)	k=0.31 $U_{10}^{2}(Sc/660)^{-1/2}$ k=0.39 $U_{10}^{2}(Sc/660)^{-1/2}$	In situ wind speed Long term wind speed
Raymond and Cole (2001, RC01)	$k=1.91\exp(0.35U_{10})$	

 $Sc=2039.2-120.31T+3.4209T^2-0.040437T^3$ CH₄ (Wanninkhof, W92)

Fig. 3. Time-course of methane concentrations in headspaces of vials containing different water samples from the Garonne tidal river in April 2005. The "river upstream ETM" sample is from Sta. G30 and had a SPM concentration of 3.2 mg L⁻¹. The three ETM samples are from Sta. G70; the "ETM in situ" sample was incubated without any treatment and had a SPM concentration of 2,020 mg L⁻¹; in the "ETM clarified" sample, the particles were removed by settling during 54 h, and the SPM concentration was 16 mg L⁻¹; in the "ETM concentrated" sample, SPM was increased by settling and was 8,720 mg L⁻¹. Headspace and sample volumes were both ~80 mL. Incubations started at two different dissolved methane concentrations in the water: (A) 360 nmol L⁻¹ and (B) 7,200 nmol L⁻¹.

Fig. 4. Time-course of methane concentrations in headspaces of vials containing a water samples from the Garonne ETM in May 2005 (SPM concentration: $1,730 \text{ mg } \text{L}^{-1}$) performed at low methane concentrations. The dashed line shows the atmospheric methane concentration of 1.8 ppmv.

Source: Abril et al., 2007